S CONSULTANT

Inventing the future....

SECURITY TESTING FOR
THIRD PARTY COMPLIANCE

CLIENT

Our client deals with number of Flexible Alternating
Current Transmission System (FACTS) devices. These
devices are installed on the transmission lines and
help with power flow control. When installed on
transmission lines; major purpose of these devices is
to:
» Protection of the associated FACTS devices from
fault currents
e Maintaining normal power flow in the line when
contributions from the FACTS device are not
required.

These Devices are installed in the field, on the
transmission lines or below them on the ground.
These filed devices then communicate wirelessly
with a coordinator in the substation, which in turn
relays commands and information to a protocol
concentrator. The protocol concentrator
communicates with a desktop application for remote
control of the field devices. The communication
scheme consists of both wired and wireless
protocols, some of which are proprietary while others
are standard. The solution consists of desktop
applications, web applications, Linux systems and
Smart 10T devices running secure firmware.

PROBLEM STATEMENT
AND CHALLENGES

The client contacted us for the cybersecurity
evaluation of their end-to-end system before
submitting their solution to a third-party evaluation.
This was a critical for their success since the
solution was to be deployed on Power Crids
worldwide and Grids are considered highly sensitive
critical infrastructure in most countries and
governments/distribution companies were extra
cautious about getting it installed at their stations
without proper evaluation.

We were required to fully evaluate, test, and harden
the system before they went for the expensive third-
party audits. The goal of this assignment was
passing those audits on the first attempt.

During multiple iterations of security testing, we
faced several key challenges:
e In order to test the security of the proprietary
protocols, we had to figure out how to capture,

decipher, modify and re-transmit the traffic on the wired

network.

¢ An even bigger challenge was to capture, decipher,
modify, and re-transmit the traffic over the wireless
network.

* One key aspect of security was the randomness of
security keys, so we had to figure out a way to test if
the keys were truly random or not.

* Another challenge was to test all the services against
millions of possible packet structures in order to test
how well corrupt/invalid packets were handled.

¢ Finally, we had to make sure that we tested for wide
range of scenarios not thought of by the designers and
hence not covered in the requirements or incorporated
in the design.

SLOUTION STRATEGY

We started this activity by going through the design and
architecture documentation in order to fully understand
how the system was designhed and how each component
worked. We focused especially on the security design and
architecture documentation, going through all the security
mechanisms in place as well as studying all the
communication protocols in depth at the packet level.

Here's how we handled the various challenges:

* For the wired protocols, we used a two-pronged
approach. First we designed python scripts using Scapy
tool to copy the packet structure and transmit custom
packets to the targets. Secondly, we used actual
devices and modified the code inside such that they
periodically sent rogue packets to the target. These two
techniques allowed us to bypass the step requiring
capturing and deciphering the packets as we could use
the existing code and hardware to transmit
modified/corrupted packets of our choosing.

* For the wireless protocols, we had two challenges, we
needed a way to listen in on the wireless transmissions
and we needed to simulate rogue devices sending out
malicious traffic. For the first challenge, we put probes
on the SPI pins coming out of the radio modules on the
device. These signals were then sent to a Logic
Analyzer (Salae) and once we had figured out the
correct frequency and timing and the data was
captured,

we exported it into excel and designed a Macro
to decipher it in granular details down to a single
bit.

 Next part was simulating a rogue device, this « One of the biggest challenges in security testing is to

was accomplished by using one of the actual
devices and adding a script in the code that
would send rogue packets to the target
devices periodically. Some of these packets
had valid hashes while others had invalid hash
values. This allowed us to test if the system
was correctly validating integrity of the
packets as well as test for systems resilience
against packets that were incorrectly
formatted or had invalid data.

The system utilized several pairs of security
keys, some of which were generated on the
devices during session establishment. We had
to make sure that these were truly random.
This was not an easy task as we had to
manually establish/re-establish the sessions
to force key generation and then we copied
those keys to an excel sheet for comparison.
This technique allowed us to catch a high
severity issue where one of the keys
appeared to have a repeating pattern. Further
investigations of the code allowed us to
uncover a serious flaw where part of a
counter was being copied to the key variable.
The solution employed various protocols and
we needed to make sure that all the nodes
handled rogue packets safely. To achieve this
goal we used the fuzz testing techniques.
While it is possible to do a blind fuzz test
where we use freely available open source
scripts bombard the system with corrupted
data. It is always more efficient and
productive to do a grey box or white box fuzz
testing technique. This required an in-depth
study of the protocol specifications, structure,
allowed ranges, data types, security functions
and handshake mechanism.

Next, we used a tool called fuzzing
frameworks like Peach Fuzz or
Sulley/BooFuzz, that allowed us to replicate
the packet in python. These frameworks
provide some handy functions that help
automate the task of creating fuzzing test
cases. The goal of this exercise is to generate
a script that would make TCP connection to
the target device behaving like the actual
node and then start sending packets that an
actual device would send followed by
hundreds of thousands of corrupt or mutated
packets that were only slightly different from
the original. It is always preferred to keep 99%
of the packet as close to the original as
possible and mutate each byte separately,
because it makes it more likely that the
packet will not be blocked at the firewall.

think outside the requirements and find issues in the
buisness logic or issues that are outside the scope of
the requirements/design of the products. This required
a lot of exploratory testing where our team used their
experience and expertise to identify several serious
flaws. For example, we did not have any requirements
for the maintenance tools as the client did not think that
security was important if a tool was not going to the
customers. However, when we studied these tools, we
realized that one of these tools that was used for
troubleshooting by the maintenance engineers could
connect to the devices without authentication, and
when we looked at the code, we realized that these
tools were effectively using backdoors to connect and
issue all kinds of commands to the devices. This was a
serious issue that would have been a deal breaker for
many auditors and customers. The client realized the
severity of the issue and put in security mechanisms in
all their maintenance tools.

HIGHLIGHTS

As a result of our cybersecurity evaluation of the
client's end-to-end system, which contains loT
devices, coordinators, data concentrators, web
applications and desktop applications, following
are some of the highest severity issues that were
identified and fixed in the end-to-end system:

« |dentified a critical weakness in security
authentication mechanism related to the
generation of security keys

e During fuzz testing, identified several packets
in multiple devices that could be remotely
sent to crash the system

» l|dentified hidden user accounts and broke
passwords

+ Bypassed authentication in a desktop
application

» Retrieved secure data and files from the web
application bypassing the login.

CONTACT US

[Explore ways to use our expertise in growing
your

business while establishing a valuable
partnership with

us.

Contact our consultants at:

Phone: +1.412.533.1700 (Ext: 585)

E-mail: info@sqaconsultant.com

Website: www.sqaconsultant.com

